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An extensive quantity is a family of functions gZv of random parameters, 
indexed by the finite regions V (subsets of yd) over which gZv are additive up 
to corrections satisfying the boundary estimate stated below. It is shown that 
unless the randomness is nonessential, in the sense that lira 7*v/[ V[ has a unique 
value in the absolute (i.e., not just probabilistic) sense, the variance of such a 
quantity grows as the volume of V. Of particular interest is the free energy of 
a system with random couplings; for such 7* v bounds are derived also for the 
generating function E(e'V). In a separate application, variance bounds are used 
for an inequality concerning the characteristic exponents of directed polymers in 
a random environment. 

KEY WORDS:  Random systems; static disorder; extensive quantities; 
fluctuations; directed polymers. 

1. I N T R O D U C T I O N  

Lattice models of statistical mechanics with random parameters in the 
interaction energy have been studied extensively in recent years. Among the 
best known examples are the random field Ising model (RFIM) ~1) and the 
Edwards-Anderson spin-glass model. ~2~ 

The Edwards Anderson spin glass energy is 

H= - (1.1) 
<0> 
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where Jo are random couplings and a i =  _+1 are the spin variables. In the 
RFIM case 

H =  - Z a ~ / - Z ~ a ,  (1.2) 
(tT') i 

with random fields ~/i (see Section 5 for precise definitions). In these models 
the finite-volume free energies Fv are random variables, since they depend 
on the random parameters ({Jij}, {qi}) entering H. This paper focuses on 
the fluctuations of such functions of the randomness, discussed here within 
the context of extensive quantities, of which the free energies and the 
ground-state energies are prime examples. 

Before stating the results, let us note that in the Sherrington 
Kirkpatrick ("mean-field") version of the spin-glass model one finds that 
the variance of the free energy of an N-particle system can behave in 
different ways, being of the order O(N) at low temperatures and of the 
order O(1) at high temperatures/3~ 

In contrast, the general results derived here show that in the finite- 
dimensional models mentioned above the variance of the free energy, as 
well as the variance of the ground-state energy, are always of the order of 
the volume, i.e., 

k I gl ~ Var(Fv) ~< K IV[ (1.3) 

with volume-independent constants 0 < k < K < o0. 
The variance of a random variable X is defined as Var(X)= 

El(X-E(X))2],  with E denoting expected value. 
The main result of this paper is a lower bound (the upper bound being 

quite elementary) on the variance of extensive quantities ~v  (see 
Definition 2.1). We show that for each such quantity gt 

Var(~v) >~k I gl, k = k ~ , > 0  (1.4) 

(for sufficiently "regular" regions V), unless the randomness is irrelevant for 
~u in the sense that the limiting density 

~r-/V 
lim (1.5) 

v -  E-L, L y  I VI 
t ~ o o  

is constant in an absolute (not just probabilistic) sense. 
In view of this general statement, one could ask whether it is also true 

that the fluctuations of an extensive quantity are Gaussian, on the scale of 
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x / - - • .  In Section 5 we show that this need not be the case--though the 
counterexamples show only very mild violations of the proposed rule. 

Fluctuation bounds have a number of applications. Results related to 
those discussed here were instrumental in the proof of rounding effects of 
the quenched randomness on first-order phase transitions in low-dimen- 
sional systems. (4) Another application, presented in Section6, is an 
inequality for characteristic exponents of the model of directed polymers in 
a random environment. 

The paper is organized as follows. Section 2 includes the definition of 
the extensive quantities and the statement of the main result, which is 
proven in Section4. In Section 3 we present some elementary, though 
useful, bounds on the fluctuations of quantities depending on independent 
random variables. Section 5 discusses applications of the general bounds to 
lattice models of disordered systems. Finally, Section 6 contains an applica- 
tion of the variance bounds of Section 2 to a first passage problem. 

2. VARIANCE B O U N D S  

In this section we define our notion of an extensive quantity and state 
the general result. Functions of random parameters associated with a 
lattice are discussed here in an abstract setting--with no underlying spin 
model. 

Let {r/~} be a family of independent random variables, with ~ ranging 
over a collection of finite subsets of the lattice 2 d, satisfying 

E(t/:) = 0; E(r/~) = 1 (2.1) 

The joint distribution of the {t/~} as well as the distribution of an 
individual tt: will be denoted by v. We assume that v is translation 
invariant. 

D e f i n i t i o n  2.1. An extensive quantity is a family of functions 
~u = { ~uv} indexed by the finite subsets of Z d which satisfy: 

(i) Each ~u v is a continuous function of {r/~[~ c V}. 

(ii) For every finite set V and a cubic region A c V, 

where B A depends only on ~/ in the boundary 
{ a c Z d l a ~  A # Z  and A C ~ }  and obeys the bounds 

E(B~) < vo 

(2.2) 

set ~ ( A ) =  

(2.3) 



290 Wehr  and Aizenman 

and, for A a translate of [ - -L,  L]  d, 

E(BA) = o(L a) as L --* oo (2.4) 

An extensive quantity is called translation invariant if for all ~/and x, 
~r~v(Txr/) = ~uv(r/), where Tx is the translation by the vector x. 

As a preliminary remark we note that extensive quantities obey a "law 
of large numbers" in the following sense. 

P r o p o s i t i o n  2.2. Let gt be a translation-invariant extensive quan- 
tity. If the distribution of t/ is translation invariant and ergodic, then for 
V--, 2U in the sense of van Hove,/3) ~Pv(r/)/I VI converges almost surely to 
a constant (IVI being the number of the lattice sites in V). 

Properties of this type are generally known (see refs. 6). The proposi- 
tion applies in particular in the case of independent variables considered 
here. Note that for periodic configurations t / the limit 

~(t/) = lim 1 gtv(r/) (2.5) 
vT~ I VI 

(which for extensive quantities always exists) may in general depend on r/. 
Our main result, proven in Section 4, concerns the order of fluctua- 

tions of ~v(tl): 

T h e o r e m  2.3. For a translation-invariant extensive quantity ~o, let 
I~, = { ~(t/)lq a periodic configuration}, where ~(t?) is defined by (2.5). If 
I~, contains more than one point, then there exists T <  oo (large enough) 
and k > 0 with which, for any finite V<  7/a, 

Var(~v)  ~> k Ilntr VI 

where Intr  V is the interior of V: 

Intr  V=  {xe  Vldist(x, VC)>~ T} 

(2.6) 

(2.7) 

Furthermore, regardless of the above assumption about I~, but under the 
finite-range assumption, that for some R all r/~ with d i a m ( e ) > R  are 
constant with probability 1, there exists a K <  oo such that for every finite V, 

Var(~v)  <~KIV] (2.8) 

Remarks. 1, For V sufficiently regular the lower bound (2.6) is of 
the order of the volume of V. More precisely: if V, ~ E ~ in the sense of 
van Hove, then l im,~ oo([Intr V,I/[Vn[)= 1 for any T. 
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2. Further information on the probability of large fluctuations of the 
finite-volume free energies is provided by a bound on the moment 
generating function presented in Section 5. 

3. G E N E R A L  F L U C T U A T I O N  B O U N D S  

In the derivations of the above and other results, use is made of 
general bounds on fluctuations of random variables of the form 

X ( ~  1 ,..., "CN) ( 3 . 1 )  

where "(1 ..... "c N are independent random variables with values in a 
measurable space g and X is a real-valued measurable function on gN. 

3.1. Var iance  Bounds 

Let p~ denote the probability measures on S describing the distribu- 
tions of r~. Since rj, j = 1,..., N, are independent, the conditional expecta- 
tion of X conditioned on the event {z, = t} is given by 

g ( X l v , = t ) = f  1~ p/dvflX(vl,...,vi_a,t,V~+l,...,VN) (3.2) 
j(~i) 

For X as in (3.1) we denote by Vau(X) and Vari(X) the following 
"localized" variances: 

Vari(X) de2 Var(E(XF ~i)) 

= f  pi(dt)[f  ]-I PJ(d*j) X(Zl,'",vi =t ..... ZN) 
j (r  

-- f 1-~ pj(d"cj) ~(T, 1,... , "TIN) ( 3 . 3 )  
j = l  

"x/ 

Vary(X) d~2 V a r ( X -  E(XI ~1,..., ~ i, ~+ ~,..., ~N)) 

I 1 = f FI &(d'cj) X(rl,..., r N ) - f  pi(dt)X('q,..., ,i=t,..., "rN) (3.4) 
j = l  

Proposi t ion  3.1. For any X o f t h e  form (3.1), 

N /N N ~ /  

Vari(X) ~< Var(X) ~< ~ Vau(X) 
i = 1  i = l  

(3.5) 
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Proof. 

.~= L2 (gN, [-I pi(dvi) ) 
i = 1  

For i=  1,..., N let R~ be the operator in ovg defined by 

(R, Y)(~I,..., ZN) = (pi(dt) Y(zl ..... zi_ 1, t, zi+ 1,...,rN) 
d 

and let 

The argument is conveniently carried in the Hilbert space 

(3.6) 

(3.7) 

i 

P,= 1-I Rj; Po=I (3.8) 

These Ri and Pi (i = 1,.., N) form a family of commuting orthogonal 
projections. With the natural identification of random variables of the form 
(3.1) and their various conditional expectations with elements of ~ we 
have 

X= Po X 

E(X) = PN x 

Z(Ylr,) = l-[ RjX (3.9) 
j ~ i  

Var,(X) = l-I Rj 
\ j ~ i  / 

"x/  

Vari(X) = I] ( I -  Ri)XI] ~ 

Note that the random variables corresponding to the vectors P~X form 
a martingale (with respect to the ~-algebras ~ generated by {rl ..... ~}) 
and therefore the vectors (P~X-P~_ 1X), being martingale differences, are 
mutually orthogonal. The last assertion can also be verified by simple 
algebra. 

It follows that 
N N 

Var(X)= IIX-- E(X)[[~= ~, [l(Pi_x- Pi)Yl122 = ~ [[Pi_~(I- R~)X[t~ 
i = 1  t = l  

(3.10) 
and consequently, using the representation (3.9), 

Vary(X) = [ I  Rj ( I -  ~ Var(X) 
i = l  i = l  j ( ~ i )  

N N x,~ 

<. ~ II(I-R~)gl[2= ~ Vary(X) I (3.11) 
i = 1  i = l  
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3.2. An Upper Bound for the Moment Generating Function 

Useful information about the nature of fluctuations is often conveyed 
by the moment generating function. In Section 5 we make use of the following 
bound. 

Proposition 3.2. Let ~1 ..... "['N be independent real random 
variables with 

E(e ~') <~ e c't2 (3.12) 

for all t E ~. For  a function X(vl,..., rU) let Li be the Lipschitz constants: 

L i =  sup {IX(r1 ..... ~i+~,...,~N)--X(~x,...,~....,TN)I/13~I} (3.13) 
371 ,-", "~N, ~'C 

Then, for every real t, 

E(exp{t[X-E(X)]})<~exp 2 F~ c~L~t 2 (3.14) 
k = l  

ProoL 1. Let us prove (3.14) first for N =  1, i.e., for functions of a 
single variable. In this case we omit all the indices. Let v be the distribution 
of r. Introducing a second, independent copy of r - -denoted  by ~'--we have 

E(exp { f I X -  E(X)]  }) 

=fv (dz ) exp{ t f v (d r ' ) [X ( r ) -X ( r ' ) ] }  

= f f  v(dr v(ar') cosh{t[X(r - X(r } 

= ff  v(dr) v(dr') cosh[tL(~ - r ' ) ]  

= f f  v(dr) v(dz') �89 {exp[tL(r  - r ' ) ]  + ejxp[tL(r'- T)] } 

<~ exp(2cL2t 2) (3.15) 

In the above sequence of steps, we applied the Jensen inequality and then 
symmetrized the expression in order to make a better use of the Lipschitz 
condition (3.13). 
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2. For general N>~ 1 

E(exp { t [ X -  E(X)]  } ) 

[ [ IN_I  v (dzk)exp[ tX(z l  ..... T,N) ] 

It 

r~ ~ [I~=1 v(dz,)exp[t S l-[?=k+ 1 v(dL) X(zl,..., rN)] 

N ~ v(dzk) exp[t~'(zl,..., zk)] 
~< H sup 

~= 1 ~1 ...... k-i exp[t S v(dZk) X(zl,..., zk)] 
(3.16) 

where 2(zl,..., Tk) = ~ I~Ni=k+l "r X( 'C l , ' " ,~CN)  �9 
Since, for any choice of ~1 ..... Zk_ 1, 2 as a function of zk satisfies the 

Lipschitz condition with the constant Lk, the proposition follows from the 
case N =  1 proven above. | 

4. V A R I A N C E  B O U N D S  FOR E X T E N S I V E  Q U A N T I T I E S  

For the general result stated in Theorem 2.3 we apply Proposition 3.1 
at the level of block variables, as seen in the proof of the following lemma. 

i . e mma  4.1. Let gt be an extensive quantity. If for some rectangular 
region A the collection ff of pairs of coupling configurations (t/', tl" ) 
satisfying 

~A(~') -- ~UA(rf')/> ~ IAI (4.1) 

with some 6 > 2E(B~)/IAI is of positive v | v measure, then, for every finite 
V c Z  a, 

Var(~Vv) 1> �89 - 2E(B.) /IAI] 2 m I11 I VIA (4.2) 

with m = v | v(•). Here I rl~ denotes the maximal volume of a subset of V 
tiled by disjoint translates of A. 

Proof. Let A 1 ..... A M be a collection of disjoint translates of A 
contained in V. We shall apply Proposition 3.1 to g~v conceived as 

SPy = X(Zl,...,ZM,..., rN) (4.3) 

where for i =  1 ..... , M, zi represent the block variables 

r, =- ~l(~,)= {~l~ ]c~ c Ai}  (4.4) 
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and for i =  M +  1 ..... N, ri varies over all the other variables t/~ on which 
~u v may depend. 

For i<<,M we have, using the decomposition ~v  = 7JA + ~V\A + 
(g~v--7JA - 7tV\A) and estimating the "boundary term" by B A of (2.2), 
which does not depend on ~/A, 

Vari(X) = v(dt) v(dt') [E(XI ~ = t) - E(XI ri = t ')] 2 

) 5  v(dqA,)v(dt/'A,) [gtA,(r/)-- gtA,(q')-- 2E(BA,)] 2 

>~ �89 IAI - 2E(BA,)] 2 

Proposition 3.1 implies now 

(4.5) 

Var(~v)>~�89 2 ~ mlA] 2 (4.6) 
i:Alc V 

from which (4.2) readily follows. | 

Proof of Theorem 2.3. (i) The lower bound. It follows from our 
assumptions on I~, that there is some 6 > 0 such that in every cube A, with 
edge length L sufficiently big, there is a pair of coupling configurations 
{/~a, /~A } with 

~ J A ( t / A ) -  ~/A(t/~l) > I~ IA[ (4.7) 

The continuity of ~u A implies that for each such L the inequality (4.7) holds 
for {t/A, t/~ } in a set of positive v | v measure (depending on L). Let us 
choose L big enough so that 

E(BA)/IAI < 26 (4.8) 

[which by (2.4) holds for L large enough]. A simple covering argument 
shows that [VIA >~ const. IntL V, and hence the claimed lower bound (2.6) 
readily follows from the conclusion of Lemma 4.1. 

(ii) For the upper bound we apply Proposition 3.1 with t/a, e c V, in "x/ 
the role of zi. In order to estimate Var~ 7'v, we choose for A a rectangle 
containing c~. The corresponding decomposition of g~v, as above (4.5), 
shows that the variance of g"v as a function of the particular t/~, with the 
other random couplings fixed (at some {t/a} ), is not larger than 

�89 f v(dtl~ ) v(dtl,) [ gt (t/~, {t/al e 4: fl }) - g~(t/', {t/ale # fl }) + 2BA(tl~(A))] 2 

(4.9) 



296 Wehr and Aizenman 

Integrating over r/~ with /~ ~ c~, we obtain (via simple applications of the 
Schwarz inequality) 

" x /  

Var~ 5Vv ~< Var(~UA) + 2E(B]) (4.10) 

The above quantity is finite by the assumption (2.3). In the finite-range 
case, the summation of (4.10) over ~ yields an upper bound on Var ~v  
which is proportional to I VI, as claimed in (2.9). I 

5. FREE ENERGY FLUCTUATIONS IN R A N D O M  S Y S T E M S  OF 
STATISTICAL M ECHANICS 

The above results have implications for the free energy in models with 
static disorder (quenched randomness). We consider a general class of spin 
models on 2 a with interactions of the form 

H(a) = Ho(a) + ~ (h~ + e~rl~ ) g~(a) (5.1) 
o~ 

where ~ ranges over finite subsets of the lattice and {~/~} is a family of 
independent random variables with a translation-invariant distribution, 
satisfying the normalization (2.1). H0 is a nonrandom component of the 
interaction. It may be given by an expression of the form 

Ho(a)=  ~ qsA(~r ) (5.2) 
A c Z  d 

where the summation is over finite A and each 05 A is a bounded function 
of the spins in A. In the sum in (5.1), for each c~, g~ depends only on the 
spin variables {ai} . . . .  and is assumed to be uniformly bounded by 1. Its 
coefficient consists of two terms--the deterministic h~ and the random e~/~. 

We assume that the system is translation invariant, in the sense of 
strict invariance for the nonrandom part and stochastic invariance for the 
random component of H(a); i.e., for every lattice translation T, 
r gr~( . )=g~(T . ) ,  hr~=h~, er~=g~, and, furthermore, 
{r/~} have a translation-invariant distribution. 

The finite-volume free energy of the model at the inverse temperature 
/3 equals 

1 (,, 

Fv(tl; fl, e) = - = log / po(&r) e a.v(~) 
P , I  

(5.3) 

where Po is the a priori probability distribution of the spin variables, and 
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Hv is the partial sum, consisting of the terms involving the spin in V. For 
fl = m (zero temperature), Fv is the ground-state energy: 

Fv(t/; 0% e) = inf~ Hv(a) (5.4) 

Bomark. In the above definition, Hv(a) consists of those interaction 
terms which involve only the spins in V. There is a certain amount of non- 
uniqueness in this notion, since the infinite-volume interactions have more 
than one representation in terms of the local sums (5.2); alternatively said, 
finite-volume free energies typically depend on the boundary conditions. 
Curiously, that effect (whose magnitude is proportional to ]~V[) does not 
ruin the fact derived here that the fluctuations of Fv are only of the order 
of I VI 1/2 

Proposition 5.1. If H0 is of the form (5.2), with 

and 

Ih~l + ~  - - <  o0 (5.5) 

]]q~AH~ < oo (5.6) 
A=Zd.A~0 IA] 

(I]'][~ denoting the supremum norm), then for each fl ~< Go the quantity 
{Fv} defined above is extensive. 

Proof. Using the inequality 

logfpo(da) eA(~)+~(~)-logfpo(da)e A(") ~< [[BI[ ~ (5.7) 

we have, for each 

IFv(t/) -- FA(q) -- Fv\A(tl)l 

~< sup IHv(a) - HA(a) -- HV\A(a)I 
o- 

~< ~ I1~11~+ ~ (Ih~l+~l~l)ae2B~('7) (5.8) 

The last expression depends only o n  r/~(A ). Integrating it over q, we obtain 

E(BA)<~ Z Z Irq'AIl___~+ Z Z Ih~l+~ 
~ ,  ~ ,  IAI ~e.~ . . . .  I~1~ 

A e ~ ' (A)  c~ ~ !@(A) 

<. ~. ~ l l4'All~+lh~l+~=o(iAI) (5.9) 
x c - A  A ~ O ,  [ A [  

d iam(A )/> d(x ,  r ) 
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where the last conclusion is by (5.5) and (5.6). This verifies (2.4). The 
second-moment condition (2.3) follows from (2.1). II 

Specific examples are the following models with spins taking values 
_+1. 

(i) Random-Field Ising Model (RFIM)/~  The RFIM interaction is 

= - J x  - Y ,  (5.to) 
x, y x 

Here Jz are ferromagnetic (i.e., positive) coupling constants of finite range, 
and x and y run through Y a. 

(ii) The Edwards-Anderson Spin-Glass Model3 2) In this case 

H ( g ) =  - ~ qx.ygx% (5.11) 
I x -  Yl = I 

with the i.i.d, random variables t/x,y (of a symmetric distribution). The 
parameter e is omited, since its role is played in this case by the inverse 
temperature ft. 

5.1. Upper Bounds 

In view of Proposition 5.1, the general results on extensive quantities 
apply to free energies. The upper bound of Theorem2.3 yields the 
following: 

Proposition 5.2. If the interaction (5.1) is of finite range, then 
there exists a constant K (dependent only on the interaction) such that for 
every/~ ~< oe and for every finite set V 

Var(Fv) ~< K IV1 (5.12) 

Further information on the probability of large fluctuations is con- 
tained in the following consequence of Proposition 3.2. 

Proposition 5.3. Let H be as above; then for every fl ~< oe, 

expLtE(~v) J ~ ~o 

with the constants C~ defined by the conditions E(exp(tq~))<<,exp(C~t 2) 
(for all t eE) .  
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The moment generating function bound (5.13) implies the variance 
bound (5.12) with 

K = 4  ~ C~8~ (5.14) 
~ 0  

Furthermore, by a standard application of the exponential Chebyshev 
inequality, (5.13) yields the following bound on the probabilities of devia- 
tions of Fv. 

Coro l la ry  5.4. 

Prob(IFvl/> b) ~> exp(-bZ/4K[VI) (5.15) 

with K given by (5.14), 

Romork. In the study of the RFIM it is important to analyze 
probability bounds of the type (5.15) for the differences of the finite-volume 
free energies, with + and - boundary conditions, (7~ 

Gv=Fv,+ -Fv, (5.16) 

It is easy to see that the above corollary applies to this quantity as well, 
thus proving a particular case (B r ~ )  of the conjecture stated in ref. 7, 
that in d >  3 dimensions 

I c~ ] 
Prob(IGA-GB] ~>b)~<exp - e2(IA~+-~\AI ) (5.17) 

for every two finite sets A, B c ya. The full statement is still unproven. In 
ref. 7 it is shown that such a result would suffice for a proof of existence of 
the phase transition (seen by varying h) in the three-dimensional RFIM. 
The existence of the phase transition was proven by other means in refs. 8 
(for T=  0) and 9 (for T> 0, small enough). 

5.2. L o w e r  Bounds 

In order to apply Proposition 2.2 to a particular model, one has to 
prove existence of two periodic configurations of the random parameters 
for which the limit 

Fv 
lim - -  (5.18) 

v ~ o o  IvJ 

takes two different values. We do this in detail only for the RFIM case, and 
under the following additional assumption: 
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(A) The restriction of v to at least one of the sets R+\{0} and 
R_\{0}  is supported in more than one point. 

We describe below how this assumption can be avoided. 
Let (A) be satisfied and let a > 0. For the two periodic configurations 

we choose the constant configurations r/i-~/(~) and t/i-~/(2), with r/(~), 
r/(2) e supp v and (say) t/(1) > r/(2/> 0. The difference of the finite-volume free 
energies corresponding to these two field configurations satisfies 

Fv(~  (~)) - FrO7 (2)) >~ 1 

I vl 
e(?] ( 1 ) -  ?~(2))(0" 0 } {O},r/(2)> 0 (5.19) 

where ( .  }A,, is the expectation in the Gibbs distribution for the (non- 
random) Ising model at the temperature/3 1 and uniform magnetic field t/, 
while (ao } {0~,~2~ (>  0) is the magnetization in the one-particle system (the 
second step in (5.19) is by the second Griffiths inequality(l~ Hence, the 
assumptions of the Proposition 2.2 are met, and we have: 

P r o p o s i t i o n  5.5. For each RFIM with e > 0, satisfying the condi- 
tion (A) stated above, there exist some k > 0 and L > 0 such that for every 
finite V [with IntL V defined below (2.7)] 

Var(Fv) ~> k [IntL V[ (5.20) 

For completeness, let us outline here an argument which permits one 
to remove the clause (A) seen above. The remaining case is when the 
distribution of the random parameters is supported at two points with 
opposite signs, say ~/1 and ~/2. To generate a pair of periodic field configura- 
tions with different values for the limit (5.18), one can choose the constant 
configuration r / -  Y]I and its modification obtained by replacing q~ by r/z on 
a periodic sublattice of low density. In order to prove the desired statement-- 
which intuitively is obvious--one can use an extension of the Fortuin- 
Kasteleyn representation. (11'~z) In that representation the ratio of the parti- 
tion functions for systems in a finite volume with the two magnetic field 
configurations is equal to the probability, calculated in a bond percolation 
model, of the event that the bond configuration carries no frustration. This 
probability is bounded above by the probability of an intersection of local 
events whose number is proportional to the volume of the system. While 
these events are not independent, they are sufficiently noncoercive so that 
the conditional probability of each one of them conditioned on the status 
of all the others is less than a uniform constant, smaller than 1. The ratio 
of the partition functions decays exponentially, and hence the corresponding 
free energy densities are unequal. 
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Using related arguments, one can prove an inequality like (5.20) for a 
variety of other models, including spin glasses (for which the proof of the 
existence of fluctuations in the free energy density may be aided by the 
Mattis construction of tractable periodic interactions). 

Remarks. 1. A question naturally suggested by the results presented 
above is whether the finite-volume free energy satisfies a central limit 
theorem, in the sense that the distribution of Fv-E(Fv)/x/IV] has a 
normal limit. We expect such a general statement to be false, though the 
required modification may be minor, due to a mechanism seen in a 
caricature of the RF1M's ground state. In this caricature we associate to 
each random field configuration two spin configurations corresponding to 
+ and - boundary conditions. In the " + "  configuration, a x =  +1 except 
when t / x < - 2 d ;  and in the " - "  configuration a x = - 1  except when 
r/x > 2d. The energy of each configuration is given by the RFIM interaction 
(5.10) with e=  1. We define ~bv(t/) as the minimum of the two energies. 
A standard central limit theorem does apply to the energies of the two 
configurations. Consequently, the limiting distribution for the (scaled) 
ground-state energy with free boundary conditions is that of a minimum of 
a pair of jointly Gaussian random variables, which are dependent but not 
identical. That distribution is, of course, (mildly) non-Gaussian. 

2. One may expect the above caricature to offer an approximation to 
the 3D RFIM at low temperatures and for small disorder, where large con- 
tours are sparse (see refs. 8 and 9). An even stronger statement may be 
true--in the context of disordered systems with finitely many "phases," 
which are generated by deterministic boundary conditions. The q-state 
Potts model in an appropriately defined random magnetic field may be an 
example of such a system. We expect that for such a model the distribu- 
tional limit to Fv-E(Fv)/xf-~[ is either Gaussian or the minimum of a 
finite collection of (jointly) Gaussian variables, depending on whether Fv 
is computed for a "pure phase" or for a mixture of phases. 

3. There is a natural notion of finite-volume free energy associated 
with a Gibbs state for the given interaction (such quantities were found 
very useful in ref. 4). Its definition is 

1 +/~v) 
Fv, p(fl) = ~ log p(e (5.21) 

where Hv is as above, p is an infinite-volume Gibbs state, and the sign in 
the exponent is chosen so as to produce a partial cancelation with the 
corresponding term in the Gibbs factor. In systems with random 
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parameters, Gibbs measures depend on q. In ref. 4 we show that if the 
infinite-volume Gibbs state is chosen so as to vary covariantly with r/ 
(under translations and local changes), then a partially averaged version 
of Fv, p, 

FV, R a~f f v(dtlw ) Fv, o~ 

obeys a central limit theorem. (Such a covariant family {p,} is associated 
with a nonrandomly defined phase. It is known to exist for the 
ferromagnetic RFIM, but whether it exists in the general case is an 
interesting unresolved issue.) 

6. AN INEQUALITY  FOR C H A R A C T E R I S T I C  E X P O N E N T S  OF 
DIRECTED P O L Y M E R S  IN A R A N D O M  E N V I R O N M E N T  

In optimization problems of the "first passage" type, the fluctuations 
in the value of the optimized quantity are related to the size of "typical 
excursions." We exhibit here such a relation, in the context of a model of 
directed polymers, various aspects of which have been studied in refs. 
13-15. 

Let oJ represent a nearest-neighbor walk on 77 a starting from the 
origin, and let {r/(t, x)lxeY_a; t =  1, 2,..} be a family of independent, 
identically distributed, random variables with a common distribution v(dq). 
With each walk of length T we associate the quantity 

T 

H~(09;t/)= ~ r/(t, 09(t)) (6.1) 
t - - 1  

and to each "environment" ~/we associate 

Fr(r/) = inf Hr(09; r/) (6.2) 

The space-time graph of a walk can be though of as a "directed 
polymer" in d +  1 dimensions. In this case H r  has the interpretation of the 
energy of a polymer in the random environment described by the random 
variables {r/(t, x)}, and FT becomes the ground-state energy. Another 
motivation for this model is "first-passage" problems (see ref. 16), for which 
r/(t, x) play the role of local passage times [and t indicates just a preferred 
direction in the (d + 1)-dimensional space]. In that case, F r  is the minimal 
passage time among walks from the origin to the hyperplane {(t, x ) l t  = T}. 
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The variables q(t, x) are assumed here to have an absolutely con- 
tinuous distribution of bounded density: 

0 ~  ~< K (6.3) 

In particular, it follows from the continuity of v that with probability 1 for 
each T there exists a unique energy-minimizing polymer cot of length T. 
(No assumptions are required for the mere existence of a minimum in a 
"first passage" problem with a specified starting point and a specified 
number of steps.) 

The mean displacement and the fluctuations of the ground-state 
energy are expected to obey power laws (13) with characteristic exponents 
denoted by ~ and ~: 

Var(lcor(T)[) ~ T 2~ (6.4) 

Var(Fr) ~ T 2z (6.5) 

In this notation, the following result is a rigorous version of the inequality 

z ~ > l ( 1 - d ~ )  (6.6) 

Proposition 6.1. Suppose that for some z > 0  the energy-mini- 
mizing polymer co r satisfies 

Prob(tcor(t)J >>-C1tZ)>>-C2 forall t<~T (6.7) 

with some C1 > 0 and C2 E (0, 1). Then, for T sufficiently large, 

Var(Fr)~> CT I dz (6.8) 

with C > 0, which depends only on CI, C2, and on the distribution v(dq). 

Proof. We shall use the first part of the inequality (2.13) with X =  FT 
and with it(t, x) playing the role of Vl,..., rx. Note that for a fixed T, F r  
depends only on a finite number of these variables. For a fixed pair (t, x) 
we have to estimate the variance of the following function of the single 
random variable: 

Fr,(t,x) = I I1 v(dtl(s, y)) Fr (6.9) 
(s, y)  ~ ( t ,x)  

For every b > a > 0 

v(dtt(t, x)) ~ Fr,(~,~ ) = Prob(cor(t) = x and t/(t, x) E (a, b)) (6.10) 

In order to obtain from (6.10) a lower bound on the variance of F, we use 
the following elementary lemma (whose role is similar to that played in 
ref. 2 by the results of Appendix Ill  there). 

822/60/3-4-2 
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L e m m a  6.2. Let v be an absolutely continuous measure on R with 
the density bounded by K [as in (6.3)]. Then for every increasing function 
g on N the inequality 

ff g'(n) v(dq)>~M (6.11) 

with a > b implies 

Varv(g) ~> v ( ( -  0% a])  v([b, oo)) M2 (6.12) 
K2 

where, by definition, Vary(g) - S [g(t/) - S g(t/') v(dt/')] 2 v(dq). 

Proof. 
expression 

The claim is an elementary consequence of the symmetrized 

Varu(g)=�89 [g ( r / ) -g ( r / ' ) ]  2 | (6.13) 

Proof of Proposition 6.1. For 6 which will be adjusted below (at a 
small enough value), let {a, b} be the points for which 

v ( ( - ~ ,  a])=v([b, oo)) = 6 (6.14) 

Combining Lemma 6.2 with the Vat bound of (3.5), we get 

62 r 
Var(Fr) ~> ~5 ~ ~ Prob(cor(t ) = x and t/(t, x) 6 (a, b)) 2 

t = l  [ x l < C l  tz 

const [ r ]2 
> ~ ~ ~ Prob(cor(t) = x and tl(t, x)E (a, b)) 

t ~ l  ] x [ < C l t  z 

(6.15) 

where in the first step the terms with Ix] > C1 t z were omitted, and in the 
second step we applied the Schwarz inequality. 

Now (with I [ - ]  the indicator function), 

T 

~ Prob(cor(t) = x and r/(t, x) E (a, b)) 
t = l  I x l < C l t  z 

T 

/> ~ [Prob({cOr(t)l < C~tZ) - Prob(t/(t, cow(t))r (a, b))] 
t = l  

>1 C2 T -  E I[tl(t, mr(t))  ~ (a, b)] 
t 1 

>~ C2/2T- T Prob(OT visits at least C2/2 T'"bad" sites) (6.16) 
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where a site (t, x) is declared "bad" if t/(t, x) r  (a, b). Such sites are dis- 
tributed independently with density 26, which is still to be adjusted. 

It remains now to show that the probability of the "bad" event in the 
last term of (6.16) decays faster than T -*. In fact, for 6 small enough, the 
decay is exponential in T, as the following estimate shows. For every ~c > 0 

Prob(the number of bad sites in mr is larger than KT) 

~< Prob(there is a nearest-neighbor path of T steps in 77 x 77d, 
starting from 0, containing more than ~cT bad sites) 

( 2 d ) r 2 r ( 2 6 f f r = e  ;.T (6.17) 

(the factor 2r  is a bound on the number of subsets of a given path with 
size exceeding ~T). For 6 small enough, 2 is positive. Choosing 
6 < 2 Z(4d)-Z/Q, we find that the above bounds imply 

T 2 
Var(Fr) >~ const �9 -~--;-~ = const - T 1 -az (6.18) 

which for large enough T holds with a constant depending only on C~, C2, 
and K. I 

Remarks .  (a) In order to relate the condition (6.7) to the heuristic 
definition of the exponent ~, let us note that (6.7) follows (by Chebyshev 
inequality) if we assume the moment condition 

(Io~T(t)l'> ~ A t  p= (6.19) 

with some p > 0, A > 0. 

(b) For d =  1 the exact value of ~ is believed to be 2/3. The inequality 
(6.1) would then imply z>~l/6, which is consistent with the relation 
)~ = 2 ~ -  1 derived heuristically in ref. 13. 
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